Multi-dimensional finite-volume scheme for hyperbolic conservation laws on three-dimensional solution-adaptive cubed-sphere grids

نویسندگان

  • Lucian Ivan
  • Hans De Sterck
  • Scott A. Northrup
  • Clinton P. T. Groth
چکیده

A scalable parallel and block-adaptive cubed-sphere grid simulation framework is described for solution of hyperbolic conservation laws in domains between two concentric spheres. In particular, the Euler and ideal magnetohydrodynamics (MHD) equations are considered. Compared to existing cubed-sphere grid algorithms, a novelty of the proposed approach involves the use of a fully multi-dimensional finite-volume method. This leads to important advantages when the treatment of boundaries and corners of the six sectors of the cubed-sphere grid is considered. Most existing finite-volume approaches use dimension-by-dimension differencing and require special interpolation or reconstruction procedures at ghost cells adjacent to sector boundaries in order to achieve an order of solution accuracy higher than unity. In contrast, in our multi-dimensional approach, solution blocks adjacent to sector boundaries can directly use physical cells from the adjacent sector as ghost cells while maintaining uniform second-order accuracy. This leads to important advantages in terms of simplicity of implementation for both parallelism and adaptivity at sector boundaries. Crucial elements of the proposed scheme are: unstructured connectivity of the six grid root blocks that correspond to the six sectors of the cubed-sphere grid, multi-dimensional k-exact reconstruction that automatically takes into account information from neighbouring cells isotropically and is able to automatically handle varying stencil size, and adaptive division of the solution blocks into smaller blocks of varying spatial resolution that are all treated exactly equally for inter-block communication, flux calculation, adaptivity and parallelization. The proposed approach is fully three-dimensional, whereas previous studies on cubed-sphere grids have been either restricted to two-dimensional geometries on the sphere or have grids and solution methods with limited capabilities in the third dimension in terms of adaptivity and parallelism. Numerical results for several problems, including systematic grid convergence studies, MHD bow-shock flows, and global modelling of solar wind flow are discussed to demonstrate the accuracy and efficiency of the proposed solution procedure, along with assessment of parallel computing scalability for up to thousands of computing cores.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids

A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubedsphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedr...

متن کامل

A Fourth-Order Solution-Adaptive CENO Scheme for Space-Physics Flows on Three-Dimensional Multi-Block Cubed-Sphere Grids

A high-order central essentially non-oscillatory (CENO) finite-volume scheme in combination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for solution of hyperbolic conservation laws on three-dimensional cubed-sphere grids. In particular, the fluid flows of interest are governed by the compressible form of Euler and ideal magnetohydrodynamics (MHD) equations and pertai...

متن کامل

High-Order Central ENO Finite-Volume Scheme for MHD on Three-Dimensional Cubed-Sphere Grids

A high-order central essentially non-oscillatory (CENO) finite-volume scheme is developed for the compressible ideal magnetohydrodynamics (MHD) equations solved on threedimensional (3D) cubed-sphere grids. The proposed formulation is an extension to 3D geometries of a recent high-order MHD CENO scheme developed on two-dimensional (2D) grids. The main technical challenge in extending the 2D meth...

متن کامل

Convergence of a Finite Volume Extension of the Nessyahu–tadmor Scheme on Unstructured Grids for a Two-dimensional Linear Hyperbolic Equation∗

Abstract. The nonoscillatory central difference scheme of Nessyahu and Tadmor is a Godunovtype scheme for one-dimensional hyperbolic conservation laws in which the resolution of Riemann problems at the cell interfaces is bypassed thanks to the use of the staggered Lax–Friedrichs scheme. Piecewise linear MUSCL-type (monotonic upstream-centered scheme for conservation laws) cell interpolants and ...

متن کامل

Adaptive Sparse Grids for Hyperbolic Conservation Laws

We report on numerical experiments using adaptive sparse grid dis-cretization techniques for the numerical solution of scalar hyperbolic conservation laws. Sparse grids are an eecient approximation method for functions. Compared to regular, uniform grids of a mesh parameter h contain h ?d points in d dimensions, sparse grids require only h ?1 jloghj d?1 points due to a truncated , tensor-produc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 255  شماره 

صفحات  -

تاریخ انتشار 2013